:py:mod:`python.dgbpy.keras_classes`
====================================

.. py:module:: python.dgbpy.keras_classes


Module Contents
---------------

Classes
~~~~~~~

.. autoapisummary::

   python.dgbpy.keras_classes.TrainingSequence
   python.dgbpy.keras_classes.DataPredType
   python.dgbpy.keras_classes.OutputType
   python.dgbpy.keras_classes.DimType
   python.dgbpy.keras_classes.UserModel




Attributes
~~~~~~~~~~

.. autoapisummary::

   python.dgbpy.keras_classes.mlmodels


.. py:class:: TrainingSequence(trainbatch, forvalidation, model, exfilenm=None, batch_size=1, with_augmentation=True, tempnm=None)

   Bases: :py:obj:`tensorflow.keras.utils.Sequence`

   .. py:method:: __len__(self)


   .. py:method:: set_chunk(self, ichunk)


   .. py:method:: on_epoch_end(self)


   .. py:method:: __getitem__(self, index)


   .. py:method:: __data_generation(self, data_IDs_temp)



.. py:class:: DataPredType

   Bases: :py:obj:`enum.Enum`

   Generic enumeration.

   Derive from this class to define new enumerations.


   .. py:attribute:: Continuous
      :annotation: = Continuous Data

      

   .. py:attribute:: Classification
      :annotation: = Classification Data

      

   .. py:attribute:: Segmentation
      :annotation: = Segmentation

      

   .. py:attribute:: Any
      :annotation: = Any

      


.. py:class:: OutputType

   Bases: :py:obj:`enum.Enum`

   Generic enumeration.

   Derive from this class to define new enumerations.


   .. py:attribute:: Pixel
      :annotation: = 1

      

   .. py:attribute:: Image
      :annotation: = 2

      

   .. py:attribute:: Any
      :annotation: = 3

      


.. py:class:: DimType

   Bases: :py:obj:`enum.Enum`

   Generic enumeration.

   Derive from this class to define new enumerations.


   .. py:attribute:: D1
      :annotation: = 1

      

   .. py:attribute:: D2
      :annotation: = 2

      

   .. py:attribute:: D3
      :annotation: = 3

      

   .. py:attribute:: Any
      :annotation: = 4

      


.. py:class:: UserModel

   Bases: :py:obj:`abc.ABC`

   Abstract base class for user defined Keras machine learning models

   This module provides support for users to add their own machine learning
   models to OpendTect.

   It defines an abstract base class. Users derive there own model classes from this base
   class and implement the _make_model static method to define the structure of the keras model.
   The users model definition should be saved in a file name with "mlmodel_keras" as a prefix and be
   at the top level of the module search path so it can be discovered.

   The "mlmodel_keras" class should also define some class variables describing the class:
   uiname : str - this is the name that will appear in the user interface
   uidescription : str - this is a short description which may be displayed to help the user
   predtype : DataPredType enum - type of prediction (must be member of DataPredType enum)
   outtype: OutputType enum - output shape type (OutputType.Pixel or OutputType.Image)
   dimtype : DimType enum - the input dimensions supported by model (must be member of DimType enum)

   Examples
   --------
     from dgbpy.keras_classes import UserModel, DataPredType, OutputType, DimType

     class myModel(UserModel):
       uiname = 'mymodel'
       uidescription = 'short description of model'
       predtype = DataPredType.Classification
       outtype = OutputType.Pixel
       dimtype = DimType.D3

       def _make_model(self, input_shape, nroutputs, learnrate, data_format):
         inputs = Input(input_shape)
         conv1 = Conv3D(2, (3,3,3), activation='relu', padding='same')(inputs)
         conv1 = Conv3D(2, (3,3,3), activation='relu', padding='same')(conv1)
         pool1 = MaxPooling3D(pool,size=(2,2,2))(conv1)
         ...
         conv8 = Conv3D(1, (1,1,1,), activation='sigmoid')(conv7)

         model = Model(inputs=[inputs], outputs=[conv8])
         model.compile(optimizer = Adam(lr = 1e-4), loss = cross_entropy_balanced, metrics = ['accuracy'])
         return model



   .. py:attribute:: mlmodels
      :annotation: = []

      

   .. py:method:: findModels()
      :staticmethod:

      Static method that searches the PYTHONPATH for modules containing user
      defined Keras machine learning models (UserModels).

      The module name must be prefixed by "mlmodel_keras". All subclasses of the
      UserModel base class is each found module will be added to the mlmodels
      class variable.


   .. py:method:: findName(modname)
      :staticmethod:

      Static method that searches the found UserModel's for a match with the
      uiname class variable

      Parameters
      ----------
      modname : str
      Name (i.e. uiname) of the UserModel to search for.

      Returns
      -------
      an instance of the class with the first matching name in the mlmodels
      list or None if no match is found



   .. py:method:: getModelsByType(pred_type, out_type, dim_type)
      :staticmethod:

      Static method that returns a list of the UserModels filtered by the given
      prediction, output and dimension types

      Parameters
      ----------
      pred_type: DataPredType enum
      The prediction type of the model to filter by
      out_type: OutputType enum
      The output shape type of the model to filter by
      dim_type: DimType enum
      The dimensions that the model must support

      Returns
      -------
      a list of matching model or None if no match found



   .. py:method:: getNamesByType(pred_type, out_type, dim_type)
      :staticmethod:


   .. py:method:: isPredType(modelnm, pred_type)
      :staticmethod:


   .. py:method:: isOutType(modelnm, out_type)
      :staticmethod:


   .. py:method:: isClassifier(modelnm)
      :staticmethod:


   .. py:method:: isRegressor(modelnm)
      :staticmethod:


   .. py:method:: isImg2Img(modelnm)
      :staticmethod:


   .. py:method:: _make_model(self, input_shape, nroutputs, learnrate, data_format)
      :abstractmethod:

      Abstract static method that defines a machine learning model.

      Must be implemented in the user's derived class

      Parameters
      ----------
      input_shape : tuple
      Defines input data shape in the Keras default data_format for the current backend.
      For the TensorFlow backend the default data_format is 'channels_last'
      nroutputs : int (number of discrete classes for a classification)
      Number of outputs
      learnrate : float
      The step size applied at each iteration to move toward a minimum of the loss function

      Returns
      -------
      a compiled keras model



   .. py:method:: model(self, input_shape, nroutputs, learnrate, data_format='channels_first')

      Creates/returns a compiled keras model instance

      Parameters
      ----------
      input_shape : tuple
      Defines input data shape arranged as per the data_format setting.
      nroutputs : int (number of discrete classes for a classification)
      Number of outputs
      learnrate : float
      The step size applied at each iteration to move toward a minimum of the loss function
      data_format: str
      The data format used. The machine learning plugin uses 'channels_first' data_format.

      Returns
      -------
      a compiled keras model




.. py:data:: mlmodels