getMLPlatform ()
|
|
getUIMLPlatform ()
|
|
can_use_gpu ()
|
|
get_cpu_preference ()
|
|
get_keras_infos ()
|
|
set_compute_device (prefercpu)
|
|
getParams (dodec=keras_dict[dgbkeys.decimkeystr], nbchunk=keras_dict['nbchunk'], epochs=keras_dict['epochs'], batch=keras_dict['batch'], patience=keras_dict['patience'], learnrate=keras_dict['learnrate'], epochdrop=keras_dict['epochdrop'], nntype=keras_dict['type'], prefercpu=keras_dict['prefercpu'], withaugmentation=keras_dict['withaugmentation'], withtensorboard=keras_dict['withtensorboard'])
|
|
adaptive_schedule (initial_lrate=keras_dict['learnrate'], epochs_drop=keras_dict['epochdrop'])
|
|
get_data_format (model)
|
|
hasValidCubeletShape (cubeszs)
|
|
getCubeletShape (model)
|
|
rm_tree (pth)
|
|
getLogDir (examplenm, basedir, clearlogs, args)
|
|
get_model_shape (shape, nrattribs, attribfirst=True)
|
|
getModelDims (model_shape, data_format)
|
|
getModelsByType (learntype, classification, ndim)
|
|
getModelsByInfo (infos)
|
|
getDefaultModel (setup, type=keras_dict['type'], learnrate=keras_dict['learnrate'], data_format='channels_first')
|
|
train (model, training, params=keras_dict, trainfile=None, logdir=None, tempnm=None)
|
|
updateModelShape (infos, model, forinput)
|
|
save (model, outfnm)
|
|
load (modelfnm, fortrain, infos=None, pars=keras_dict)
|
|
transfer (model)
|
|
apply (model, samples, isclassification, withpred, withprobs, withconfidence, doprobabilities, dictinpshape=None, scaler=None, batch_size=None)
|
|
adaptToModel (model, samples, dictinpshape=None, sample_data_format='channels_first')
|
|
adaptFromModel (model, samples, inp_shape, ret_data_format)
|
|
plot (model, outfnm, showshapes=True, withlaynames=False, vertical=True)
|
|
compute_capability_from_device_desc (device_desc)
|
|
getDevicesInfo (gpusonly=True)
|
|
is_gpu_ready ()
|
|
need_channels_last ()
|
|
get_validation_data (trainseq)
|
|