python.dgbpy.dgbscikit

Module Contents

Functions

hasXGBoost()

getMLPlatform()

getUIMLPlatform()

getUiModelTypes(learntype, isclassification, ismultiregression)

getUiLinearTypes()

getUiLogTypes()

getUiClusterTypes()

getUiClusterMethods()

getUiEnsembleTypes(ismultiregression)

getUiNNTypes()

getUiSVMTypes()

getUiSolverTypes()

getUiNNKernelTypes()

getDefaultSolver(uiname=True)

getDefaultNNKernel(isclass, uiname=True)

getClusterParsKMeans(methodname, nclust, ninit, maxiter)

getClusterParsMeanShift(methodname, maxiter)

getClusterParsSpectral(methodname, nclust, ninit)

getLinearPars(modelname='Ordinary Least Squares')

getLogPars(modelname='Logistic Regression Classifier', solver=None)

getEnsembleParsXGDT(modelname='XGBoost: (Decision Tree)', maxdep=scikit_dict['ensemblepars']['xgdt']['maxdep'], est=scikit_dict['ensemblepars']['xgdt']['est'], lr=scikit_dict['ensemblepars']['xgdt']['lr'])

getEnsembleParsXGRF(modelname='XGBoost: (Random Forests)', maxdep=scikit_dict['ensemblepars']['xgrf']['maxdep'], est=scikit_dict['ensemblepars']['xgrf']['est'], lr=scikit_dict['ensemblepars']['xgrf']['lr'])

getEnsembleParsRF(modelname='Random Forests', maxdep=scikit_dict['ensemblepars']['rf']['maxdep'], est=scikit_dict['ensemblepars']['rf']['est'])

getEnsembleParsGB(modelname='Gradient Boosting', maxdep=scikit_dict['ensemblepars']['gb']['maxdep'], est=scikit_dict['ensemblepars']['gb']['est'], lr=scikit_dict['ensemblepars']['gb']['lr'])

getEnsembleParsAda(modelname='Adaboost', est=scikit_dict['ensemblepars']['ada']['est'], lr=scikit_dict['ensemblepars']['ada']['lr'])

getNNPars(modelname='Multi-Layer Perceptron', maxitr=scikit_dict['nnpars']['maxitr'], lr=scikit_dict['nnpars']['lr'], lay1=scikit_dict['nnpars']['lay1'], lay2=scikit_dict['nnpars']['lay2'], lay3=scikit_dict['nnpars']['lay3'], lay4=scikit_dict['nnpars']['lay4'], lay5=scikit_dict['nnpars']['lay5'], nb=scikit_dict['nnpars']['nb'])

getSVMPars(modelname='Support Vector Machine', kernel=scikit_dict['svmpars']['kernel'], degree=scikit_dict['svmpars']['degree'])

getNewScaler(mean, scale)

Gets new scaler object

getScaler(x_train, byattrib)

transform(samples, mean, stddev)

transformBack(samples, mean, stddev)

scale(samples, scaler)

unscale(samples, scaler)

getDefaultModel(setup, params=scikit_dict)

train(model, trainingdp)

assessQuality(model, trainingdp)

onnx_from_sklearn(model)

save(model, outfnm, save_type=defsavetype)

load(modelfnm)

apply(model, samples, scaler, isclassification, withpred, withprobs, withconfidence, doprobabilities)

Attributes

tot_cpu

n_cpu

platform

regmltypes

classmltypes

lineartypes

logistictypes

clustertypes

ensembletypes

nntypes

svmtypes

clustermethods

solvertypes

linkernel

kerneltypes

savetypes

defsavetype

xgboostjson

scikit_dict

defdtregressor

python.dgbpy.dgbscikit.tot_cpu
python.dgbpy.dgbscikit.n_cpu
python.dgbpy.dgbscikit.hasXGBoost()
python.dgbpy.dgbscikit.platform
python.dgbpy.dgbscikit.regmltypes = [['linear', 'Linear'], ['ensemble', 'Ensemble'], ['neuralnet', 'Neural Network'], ['svm', 'SVM']]
python.dgbpy.dgbscikit.classmltypes = [['logistic', 'Logistic'], ['ensemble', 'Ensemble'], ['neuralnet', 'Neural Network'], ['svm', 'SVM']]
python.dgbpy.dgbscikit.lineartypes = [['oslq', 'Ordinary Least Squares']]
python.dgbpy.dgbscikit.logistictypes = [['log', 'Logistic Regression Classifier']]
python.dgbpy.dgbscikit.clustertypes = [['cluster', 'Clustering']]
python.dgbpy.dgbscikit.ensembletypes = []
python.dgbpy.dgbscikit.nntypes = [['mlp', 'Multi-Layer Perceptron']]
python.dgbpy.dgbscikit.svmtypes = [['svm', 'Support Vector Machine']]
python.dgbpy.dgbscikit.clustermethods = [['kmeans', 'K-Means'], ['meanshift', 'Mean Shift'], ['spec', 'Spectral Clustering']]
python.dgbpy.dgbscikit.solvertypes = [['newton-cg', 'Newton-CG'], ['lbfgs', 'Lbfgs'], ['liblinear', 'Liblinear'], ['sag', 'Sag'],...
python.dgbpy.dgbscikit.linkernel = linear
python.dgbpy.dgbscikit.kerneltypes = [None, ['poly', 'Polynomial'], ['rbf', 'Radial Basis Function'], ['sigmoid', 'Sigmoid']]
python.dgbpy.dgbscikit.savetypes = ['onnx', 'joblib', 'pickle']
python.dgbpy.dgbscikit.defsavetype
python.dgbpy.dgbscikit.xgboostjson = xgboostjson
python.dgbpy.dgbscikit.getMLPlatform()
python.dgbpy.dgbscikit.getUIMLPlatform()
python.dgbpy.dgbscikit.getUiModelTypes(learntype, isclassification, ismultiregression)
python.dgbpy.dgbscikit.getUiLinearTypes()
python.dgbpy.dgbscikit.getUiLogTypes()
python.dgbpy.dgbscikit.getUiClusterTypes()
python.dgbpy.dgbscikit.getUiClusterMethods()
python.dgbpy.dgbscikit.getUiEnsembleTypes(ismultiregression)
python.dgbpy.dgbscikit.getUiNNTypes()
python.dgbpy.dgbscikit.getUiSVMTypes()
python.dgbpy.dgbscikit.getUiSolverTypes()
python.dgbpy.dgbscikit.getUiNNKernelTypes()
python.dgbpy.dgbscikit.getDefaultSolver(uiname=True)
python.dgbpy.dgbscikit.getDefaultNNKernel(isclass, uiname=True)
python.dgbpy.dgbscikit.scikit_dict
python.dgbpy.dgbscikit.defdtregressor
python.dgbpy.dgbscikit.getClusterParsKMeans(methodname, nclust, ninit, maxiter)
python.dgbpy.dgbscikit.getClusterParsMeanShift(methodname, maxiter)
python.dgbpy.dgbscikit.getClusterParsSpectral(methodname, nclust, ninit)
python.dgbpy.dgbscikit.getLinearPars(modelname='Ordinary Least Squares')
python.dgbpy.dgbscikit.getLogPars(modelname='Logistic Regression Classifier', solver=None)
python.dgbpy.dgbscikit.getEnsembleParsXGDT(modelname='XGBoost: (Decision Tree)', maxdep=scikit_dict['ensemblepars']['xgdt']['maxdep'], est=scikit_dict['ensemblepars']['xgdt']['est'], lr=scikit_dict['ensemblepars']['xgdt']['lr'])
python.dgbpy.dgbscikit.getEnsembleParsXGRF(modelname='XGBoost: (Random Forests)', maxdep=scikit_dict['ensemblepars']['xgrf']['maxdep'], est=scikit_dict['ensemblepars']['xgrf']['est'], lr=scikit_dict['ensemblepars']['xgrf']['lr'])
python.dgbpy.dgbscikit.getEnsembleParsRF(modelname='Random Forests', maxdep=scikit_dict['ensemblepars']['rf']['maxdep'], est=scikit_dict['ensemblepars']['rf']['est'])
python.dgbpy.dgbscikit.getEnsembleParsGB(modelname='Gradient Boosting', maxdep=scikit_dict['ensemblepars']['gb']['maxdep'], est=scikit_dict['ensemblepars']['gb']['est'], lr=scikit_dict['ensemblepars']['gb']['lr'])
python.dgbpy.dgbscikit.getEnsembleParsAda(modelname='Adaboost', est=scikit_dict['ensemblepars']['ada']['est'], lr=scikit_dict['ensemblepars']['ada']['lr'])
python.dgbpy.dgbscikit.getNNPars(modelname='Multi-Layer Perceptron', maxitr=scikit_dict['nnpars']['maxitr'], lr=scikit_dict['nnpars']['lr'], lay1=scikit_dict['nnpars']['lay1'], lay2=scikit_dict['nnpars']['lay2'], lay3=scikit_dict['nnpars']['lay3'], lay4=scikit_dict['nnpars']['lay4'], lay5=scikit_dict['nnpars']['lay5'], nb=scikit_dict['nnpars']['nb'])
python.dgbpy.dgbscikit.getSVMPars(modelname='Support Vector Machine', kernel=scikit_dict['svmpars']['kernel'], degree=scikit_dict['svmpars']['degree'])
python.dgbpy.dgbscikit.getNewScaler(mean, scale)

Gets new scaler object

Parameters:
  • mean (ndarray of shape (n_features,) or None): mean value to be used for scaling

  • scale ndarray of shape (n_features,) or None: Per feature relative scaling of the data to achieve zero mean and unit variance (fromm sklearn docs)

Returns:
  • object: scaler (an instance of sklearn.preprocessing..StandardScaler())

python.dgbpy.dgbscikit.getScaler(x_train, byattrib)
python.dgbpy.dgbscikit.transform(samples, mean, stddev)
python.dgbpy.dgbscikit.transformBack(samples, mean, stddev)
python.dgbpy.dgbscikit.scale(samples, scaler)
python.dgbpy.dgbscikit.unscale(samples, scaler)
python.dgbpy.dgbscikit.getDefaultModel(setup, params=scikit_dict)
python.dgbpy.dgbscikit.train(model, trainingdp)
python.dgbpy.dgbscikit.assessQuality(model, trainingdp)
python.dgbpy.dgbscikit.onnx_from_sklearn(model)
python.dgbpy.dgbscikit.save(model, outfnm, save_type=defsavetype)
python.dgbpy.dgbscikit.load(modelfnm)
python.dgbpy.dgbscikit.apply(model, samples, scaler, isclassification, withpred, withprobs, withconfidence, doprobabilities)