python.dgbpy.dgbtorch

Module Contents

Functions

getMLPlatform()

getParams(nntype=torch_dict['type'], learnrate=torch_dict['learnrate'], epochs=torch_dict['epochs'], epochdrop=torch_dict['epochdrop'], batch=torch_dict['batch_size'])

getDefaultModel(setup, type=torch_dict['type'])

getModelsByType(learntype, classification, ndim)

getModelsByInfo(infos)

get_model_shape(shape, nrattribs, attribfirst=True)

getModelDims(model_shape, data_format)

load(modelfnm)

onnx_from_torch(model, infos)

save(model, outfnm, infos, save_type=defsavetype)

train(model, imgdp, params)

apply(model, info, samples, scaler, isclassification, withpred, withprobs, withconfidence, doprobabilities)

getTrainTestDataLoaders(traindataset, testdataset, batchsize=torch_dict['batch_size'])

getDataLoader(dataset, batch_size=torch_dict['batch_size'], drop_last=False)

getDataLoaders(traindataset, testdataset, batchsize=torch_dict['batch_size'])

DataGenerator(imgdp, batchsize)

Attributes

device

torch_dict

platform

cudacores

savetypes

defsavetype

python.dgbpy.dgbtorch.device
python.dgbpy.dgbtorch.torch_dict
python.dgbpy.dgbtorch.platform
python.dgbpy.dgbtorch.cudacores = ['1', '2', '4', '8', '16', '32', '48', '64', '96', '128', '144', '192', '256', '288', '384',...
python.dgbpy.dgbtorch.getMLPlatform()
python.dgbpy.dgbtorch.getParams(nntype=torch_dict['type'], learnrate=torch_dict['learnrate'], epochs=torch_dict['epochs'], epochdrop=torch_dict['epochdrop'], batch=torch_dict['batch_size'])
python.dgbpy.dgbtorch.getDefaultModel(setup, type=torch_dict['type'])
python.dgbpy.dgbtorch.getModelsByType(learntype, classification, ndim)
python.dgbpy.dgbtorch.getModelsByInfo(infos)
python.dgbpy.dgbtorch.get_model_shape(shape, nrattribs, attribfirst=True)
python.dgbpy.dgbtorch.getModelDims(model_shape, data_format)
python.dgbpy.dgbtorch.savetypes = ['onnx', 'joblib', 'pickle']
python.dgbpy.dgbtorch.defsavetype
python.dgbpy.dgbtorch.load(modelfnm)
python.dgbpy.dgbtorch.onnx_from_torch(model, infos)
python.dgbpy.dgbtorch.save(model, outfnm, infos, save_type=defsavetype)
python.dgbpy.dgbtorch.train(model, imgdp, params)
python.dgbpy.dgbtorch.apply(model, info, samples, scaler, isclassification, withpred, withprobs, withconfidence, doprobabilities)
python.dgbpy.dgbtorch.getTrainTestDataLoaders(traindataset, testdataset, batchsize=torch_dict['batch_size'])
python.dgbpy.dgbtorch.getDataLoader(dataset, batch_size=torch_dict['batch_size'], drop_last=False)
python.dgbpy.dgbtorch.getDataLoaders(traindataset, testdataset, batchsize=torch_dict['batch_size'])
python.dgbpy.dgbtorch.DataGenerator(imgdp, batchsize)