getMLPlatform()
|
|
getParams(nntype=torch_dict['type'], learnrate=torch_dict['learnrate'], epochs=torch_dict['epochs'], epochdrop=torch_dict['epochdrop'], batch=torch_dict['batch_size'])
|
|
getDefaultModel(setup, type=torch_dict['type'])
|
|
getModelsByType(learntype, classification, ndim)
|
|
getModelsByInfo(infos)
|
|
get_model_shape(shape, nrattribs, attribfirst=True)
|
|
getModelDims(model_shape, data_format)
|
|
load(modelfnm)
|
|
onnx_from_torch(model, infos)
|
|
save(model, outfnm, infos, save_type=defsavetype)
|
|
train(model, imgdp, params)
|
|
apply(model, info, samples, scaler, isclassification, withpred, withprobs, withconfidence, doprobabilities)
|
|
getTrainTestDataLoaders(traindataset, testdataset, batchsize=torch_dict['batch_size'])
|
|
getDataLoader(dataset, batch_size=torch_dict['batch_size'], drop_last=False)
|
|
getDataLoaders(traindataset, testdataset, batchsize=torch_dict['batch_size'])
|
|
DataGenerator(imgdp, batchsize)
|
|