python.dgbpy.mlio
¶
Module Contents¶
Functions¶
|
Gets information from an example file |
|
Gets count of dataset |
|
Gets train and validation indices of dataset |
|
Splits dataset object into smaller chunks |
|
Checks if example file has scaleror not from info |
|
|
|
|
|
Gets training data from file name |
|
Gets training data from file info |
|
|
|
|
|
|
|
Saves trained model for any platform workflow |
|
Get model and model information |
|
Gets model apply info from file name |
|
Gets model apply info from example file info |
|
|
|
|
|
|
|
Gets model type |
|
Attributes¶
- python.dgbpy.mlio.nladbdirid = 100060¶
- python.dgbpy.mlio.mlinpgrp = Deep Learning Example Data¶
- python.dgbpy.mlio.mltrlgrp = Deep Learning Model¶
- python.dgbpy.mlio.dgbtrl = dGB¶
- python.dgbpy.mlio.getInfo(filenm, quick=False)¶
Gets information from an example file
- Parameters:
filenm (str): ffile name/path in hdf5 format
- quick (bool): when set to True, info is gottenn quickly leaving out some info(e.g. datasets),
defaults to False and loads all informaton
- Returns:
dict: information from data file or model file
- python.dgbpy.mlio.datasetCount(dsets)¶
Gets count of dataset
- Parameters:
dsets (dict): dataset
- Returns:
dict: counts for target attribute(s) or well(s) for project
- python.dgbpy.mlio.getDatasetNms(dsets, validation_split=None, valid_inputs=None)¶
Gets train and validation indices of dataset
- Parameters:
dsets (dict): dataset
validation_split (float): size of validation data (between 0-1)
valid_inputs (iter):
- Returns:
dict: train and validation indices
- python.dgbpy.mlio.getChunks(dsets, nbchunks)¶
Splits dataset object into smaller chunks
- Parameters:
dsets (dict): dataset
nbchunks (int): number of data chunks to be created
- Returns:
dict: chunks from dataset stored as dictionaries
- python.dgbpy.mlio.hasScaler(infos, inputsel=None)¶
Checks if example file has scaleror not from info
- Parameters:
infos (dict): information about example file
inputsel (bool or NoneType):
- Returns:
bool: True if dataset info has scaler key, False if other
- python.dgbpy.mlio.getDatasetsByGroup(dslist, groupnm)¶
- python.dgbpy.mlio.getSomeDatasets(dslist, decim=None)¶
- python.dgbpy.mlio.getTrainingData(filenm, decim=False)¶
Gets training data from file name
- Parameters:
filenm (str): path to file in hdf5 format
decim (bool):
- Returns:
dict: train, validation datasets as arrays, and info on example file
- python.dgbpy.mlio.getTrainingDataByInfo(info, dsetsel=None)¶
Gets training data from file info
- Parameters:
info (dict): information about example file
dsetsel ():
- Returns:
dict: train, validation datasets as arrays, and info on example file
- python.dgbpy.mlio.getClasses(info, y_vectors)¶
- python.dgbpy.mlio.normalize_class_vector(arr, classes)¶
- python.dgbpy.mlio.unnormalize_class_vector(arr, classes)¶
- python.dgbpy.mlio.saveModel(model, inpfnm, platform, infos, outfnm)¶
Saves trained model for any platform workflow
- Parameters:
model (obj): trained model on any platform
inpfnm (str): example file name in hdf5 format
platform (str): machine learning platform (options; keras, Scikit-learn, torch)
infos (dict): example file info
outfnm (str): name of model to be saved
- python.dgbpy.mlio.getModel(modelfnm, fortrain=False, pars=None)¶
Get model and model information
- Parameters:
modelfnm (str): model file path/name in hdf5 format
fortrain (bool): specifies if the model might be further trained
pars (dict): parameters to be used when restoring the model if needed
- Returs:
tuple: (trained model and model/project info)
- python.dgbpy.mlio.getApplyInfoFromFile(modelfnm, outsubsel=None)¶
Gets model apply info from file name
- Parameters:
modelfnm (str): model file path/name in hdf5 format
outsubsel ():
- Returns:
dict: apply information
- python.dgbpy.mlio.getApplyInfo(infos, outsubsel=None)¶
Gets model apply info from example file info
- Parameters:
infos (dict): example file info
outsubsel ():
- Returns:
dict: apply information
- python.dgbpy.mlio.dblistall¶
- python.dgbpy.mlio.modelNameIsFree(modnm, type, args, reload=True)¶
- python.dgbpy.mlio.modelNameExists(modnm, type, args, reload=True)¶
- python.dgbpy.mlio.dbInfoForModel(modnm, args, reload=True)¶
- python.dgbpy.mlio.getModelType(infos)¶
Gets model type
- Parameters:
infos (dict): example file info
- Returns:
str: Type ofmodel/workflow
- python.dgbpy.mlio.getSaveLoc(outnm, ftype, args)¶