python.dgbpy.mlmodel_keras_dGB

Module Contents

Classes

dGB_UnetSeg

dGB_UnetReg

dGB_LeNet_Classifier

dGB_LeNet_Regressor

Functions

_to_tensor(x, dtype)

root_mean_squared_error(y_true, y_pred)

getAdamOpt(learning_rate=0.0001)

cross_entropy_balanced(y_true, y_pred)

compile_model(model, nroutputs, isregression, isunet, learnrate)

dGBUNet(model_shape, nroutputs, predtype)

dGBLeNet(model_shape, nroutputs, predtype)

python.dgbpy.mlmodel_keras_dGB._to_tensor(x, dtype)
python.dgbpy.mlmodel_keras_dGB.root_mean_squared_error(y_true, y_pred)
python.dgbpy.mlmodel_keras_dGB.getAdamOpt(learning_rate=0.0001)
python.dgbpy.mlmodel_keras_dGB.cross_entropy_balanced(y_true, y_pred)
python.dgbpy.mlmodel_keras_dGB.compile_model(model, nroutputs, isregression, isunet, learnrate)
python.dgbpy.mlmodel_keras_dGB.dGBUNet(model_shape, nroutputs, predtype)
class python.dgbpy.mlmodel_keras_dGB.dGB_UnetSeg

Bases: dgbpy.keras_classes.UserModel

uiname = dGB UNet Segmentation
uidescription = dGBs Unet image segmentation
predtype
outtype
dimtype
_make_model(self, model_shape, nroutputs, learnrate)
class python.dgbpy.mlmodel_keras_dGB.dGB_UnetReg

Bases: dgbpy.keras_classes.UserModel

uiname = dGB UNet Regression
uidescription = dGBs Unet image regression
predtype
outtype
dimtype
_make_model(self, model_shape, nroutputs, learnrate)
python.dgbpy.mlmodel_keras_dGB.dGBLeNet(model_shape, nroutputs, predtype)
class python.dgbpy.mlmodel_keras_dGB.dGB_LeNet_Classifier

Bases: dgbpy.keras_classes.UserModel

uiname = dGB LeNet classifier
uidescription = dGBs LeNet classifier Keras model in UserModel form
predtype
outtype
dimtype
_make_model(self, input_shape, nroutputs, learnrate)
class python.dgbpy.mlmodel_keras_dGB.dGB_LeNet_Regressor

Bases: dgbpy.keras_classes.UserModel

uiname = dGB LeNet regressor
uidescription = dGBs LeNet regressor Keras model in UserModel form
predtype
outtype
dimtype
_make_model(self, input_shape, nroutputs, learnrate)