python.dgbpy.torch_classes
¶
Module Contents¶
Classes¶
Residual Block within a ResNet CNN model |
|
A helper Module that performs 2 Convolutions and 1 MaxPool. |
|
A helper Module that performs 2 Convolutions and 1 UpConvolution/Upsample. |
|
activation: 'relu', 'leaky', 'elu' |
|
Generic enumeration. |
|
Generic enumeration. |
|
Generic enumeration. |
|
Abstract base class for user defined Torch machine learning models |
Functions¶
|
|
|
|
|
|
|
Center-crops the encoder_layer to the size of the decoder_layer, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Attributes¶
- python.dgbpy.torch_classes.Tensor2Numpy(tensor)¶
- python.dgbpy.torch_classes.Numpy2tensor(nparray)¶
- class python.dgbpy.torch_classes.Net(model_shape, output_classes, dim, nrattribs)¶
Bases:
torch.nn.Module
- after_cnn(self, x)¶
- forward(self, x)¶
- class python.dgbpy.torch_classes.Trainer(model: torch.nn.Module, device: torch.device, criterion: torch.nn.Module, optimizer: torch.optim.Optimizer, training_DataLoader: torch.utils.data.Dataset, validation_DataLoader: torch.utils.data.Dataset = None, lr_scheduler: torch.optim.lr_scheduler = None, epochs: int = 100, epoch: int = 0, notebook: bool = False, earlystopping: int = 5, imgdp=None)¶
- run_trainer(self)¶
- _train(self)¶
- _validate(self)¶
- class python.dgbpy.torch_classes.ResidualBlock(input_channels, num_channels, use_1x1_conv=False, strides=1, ndims=3)¶
Bases:
torch.nn.Module
Residual Block within a ResNet CNN model
- forward(self, X)¶
- shape_computation(self, X)¶
- initialize_weights(self)¶
- python.dgbpy.torch_classes.create_resnet_block(input_filters, output_filters, num_residuals, ndims, first_block=False)¶
- python.dgbpy.torch_classes.autocrop(encoder_layer: torch.Tensor, decoder_layer: torch.Tensor)¶
Center-crops the encoder_layer to the size of the decoder_layer, so that merging (concatenation) between levels/blocks is possible. This is only necessary for input sizes != 2**n for ‘same’ padding and always required for ‘valid’ padding.
- python.dgbpy.torch_classes.get_conv_layer(in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, padding: int = 1, bias: bool = True, dim: int = 2)¶
- python.dgbpy.torch_classes.get_up_layer(in_channels: int, out_channels: int, kernel_size: int = 2, stride: int = 2, dim: int = 3, up_mode: str = 'transposed')¶
- python.dgbpy.torch_classes.get_maxpool_layer(kernel_size: int = 2, stride: int = 2, padding: int = 0, dim: int = 2)¶
- class python.dgbpy.torch_classes.Concatenate¶
Bases:
torch.nn.Module
- forward(self, layer_1, layer_2)¶
- class python.dgbpy.torch_classes.DownBlock(in_channels: int, out_channels: int, pooling: bool = True, activation: str = 'relu', normalization: str = None, dim: str = 2, conv_mode: str = 'same')¶
Bases:
torch.nn.Module
A helper Module that performs 2 Convolutions and 1 MaxPool. An activation follows each convolution. A normalization layer follows each convolution.
- forward(self, x)¶
- class python.dgbpy.torch_classes.UpBlock(in_channels: int, out_channels: int, activation: str = 'relu', normalization: str = None, dim: int = 3, conv_mode: str = 'same', up_mode: str = 'transposed')¶
Bases:
torch.nn.Module
A helper Module that performs 2 Convolutions and 1 UpConvolution/Upsample. An activation follows each convolution. A normalization layer follows each convolution.
- forward(self, encoder_layer, decoder_layer)¶
Forward pass Arguments:
encoder_layer: Tensor from the encoder pathway decoder_layer: Tensor from the decoder pathway (to be up’d)
- class python.dgbpy.torch_classes.UNet(in_channels: int = 1, out_channels: int = 2, n_blocks: int = 1, start_filters: int = 32, activation: str = 'relu', normalization: str = 'batch', conv_mode: str = 'same', dim: int = 2, up_mode: str = 'transposed')¶
Bases:
torch.nn.Module
activation: ‘relu’, ‘leaky’, ‘elu’ normalization: ‘batch’, ‘instance’, ‘group{group_size}’ conv_mode: ‘same’, ‘valid’ dim: 2, 3 up_mode: ‘transposed’, ‘nearest’, ‘linear’, ‘bilinear’, ‘bicubic’, ‘trilinear’
- static weight_init(module, method, **kwargs)¶
- static bias_init(module, method, **kwargs)¶
- initialize_parameters(self, method_weights=nn.init.xavier_uniform_, method_bias=nn.init.zeros_, kwargs_weights={}, kwargs_bias={})¶
- forward(self, x: torch.tensor)¶
- __repr__(self)¶
- class python.dgbpy.torch_classes.SeismicTrainDataset(X, y, info, im_ch, ndims)¶
- __len__(self)¶
- __getitem__(self, index)¶
- class python.dgbpy.torch_classes.SeismicTestDataset(X, y, info, im_ch, ndims)¶
- __len__(self)¶
- __getitem__(self, index)¶
- class python.dgbpy.torch_classes.DatasetApply(X, isclassification, im_ch, ndims)¶
Bases:
torch.utils.data.Dataset
- __len__(self)¶
- __getitem__(self, index)¶
- class python.dgbpy.torch_classes.DataPredType¶
Bases:
enum.Enum
Generic enumeration.
Derive from this class to define new enumerations.
- Continuous = Continuous Data¶
- Classification = Classification Data¶
- Segmentation = Segmentation¶
- Any = Any¶
- class python.dgbpy.torch_classes.OutputType¶
Bases:
enum.Enum
Generic enumeration.
Derive from this class to define new enumerations.
- Pixel = 1¶
- Image = 2¶
- Any = 3¶
- class python.dgbpy.torch_classes.DimType¶
Bases:
enum.Enum
Generic enumeration.
Derive from this class to define new enumerations.
- D1 = 1¶
- D2 = 2¶
- D3 = 3¶
- Any = 4¶
- class python.dgbpy.torch_classes.TorchUserModel¶
Bases:
abc.ABC
Abstract base class for user defined Torch machine learning models
This module provides support for users to add their own machine learning models to OpendTect.
It defines an abstract base class. Users derive there own model classes from this base class and implement the _make_model static method to define the structure of the torch model. The users model definition should be saved in a file name with “mlmodel_” as a prefix and be at the top level of the module search path so it can be discovered.
The “mlmodel_” class should also define some class variables describing the class: uiname : str - this is the name that will appear in the user interface uidescription : str - this is a short description which may be displayed to help the user predtype : DataPredType enum - type of prediction (must be member of DataPredType enum) outtype: OutputType enum - output shape type (OutputType.Pixel or OutputType.Image) dimtype : DimType enum - the input dimensions supported by model (must be member of DimType enum)
- mlmodels = []¶
- static findModels()¶
Static method that searches the PYTHONPATH for modules containing user defined torch machine learning models (TorchUserModels).
The module name must be prefixed by “mlmodel_”. All subclasses of the TorchUserModel base class is each found module will be added to the mlmodels class variable.
- static findName(modname)¶
Static method that searches the found TorchUserModel’s for a match with the uiname class variable
modname : str Name (i.e. uiname) of the TorchUserModel to search for.
an instance of the class with the first matching name in the mlmodels list or None if no match is found
- static getModelsByType(pred_type, out_type, dim_type)¶
Static method that returns a list of the TorchUserModels filtered by the given prediction, output and dimension types
pred_type: DataPredType enum The prediction type of the model to filter by out_type: OutputType enum The output shape type of the model to filter by dim_type: DimType enum The dimensions that the model must support
a list of matching model or None if no match found
- static getNamesByType(pred_type, out_type, dim_type)¶
- static isPredType(modelnm, pred_type)¶
- static isOutType(modelnm, out_type)¶
- static isClassifier(modelnm)¶
- static isRegressor(modelnm)¶
- static isImg2Img(modelnm)¶
- abstract _make_model(self, model_shape, nroutputs, nrattribs)¶
Abstract static method that defines a machine learning model.
Must be implemented in the user’s derived class
input_shape : tuple nroutputs : int (number of discrete classes for a classification) Number of outputs learnrate : float
a compiled torch model
- model(self, model_shape, nroutputs, nrattribs)¶
Creates/returns a compiled torch model instance
nroutputs : int (number of discrete classes for a classification) Number of outputs
a pytorch model architecture
- python.dgbpy.torch_classes.mlmodels¶