dgbpy.hdf5

Attributes

hdf5ext

modeloutstr

Classes

StorageType

Create a collection of name/value pairs.

Scaler

Create a collection of name/value pairs.

Functions

dictAddIfNew(newset, toadd)

getCubeLetNames(info)

getCubeLetNamesByGroup(info, groupnm, example)

getCubeLetNamesByGroupByItem(info, groupnm, collnm, idx)

getGroupSize(filenm, groupnm)

getNrAttribs(info)

getNrGroupInputs(info)

getNrOutputs(info)

getSeed(info)

get_np_shape(shape[, nrpts, nrattribs])

getTrainingConfig(h5file)

isRegression(info)

isClassification(info)

isSegmentation(info)

isSeisClass(info)

hasUnlabeled(info)

isLogInput(info)

isLogOutput(info)

isImg2Img(info)

isZipModel(info)

isCrossValidation(info)

unscaleOutput(info)

applyGlobalStd(info)

applyLocalStd(info)

applyNormalization(info)

applyMinMaxScaling(info)

applyRangeScaling(info)

applyArrTranspose(info)

isDefaultScaler(scaler, info[, uselearntype])

updateScaleInfo(scaler, info)

getScalerStr(info)

doOutputScaling(info)

isModel(info)

isMultiLabelRegression(info)

hasboto3([auth])

isS3Uri(uri)

shouldUseS3(modelfnm[, params, relaxed, kwargs])

Check if the model file should be stored or retrieved from S3.

rm_tree(pth)

getLogDir(withtensorboard, examplenm, platform, ...)

getOutdType(classinfo, hasunlabels)

getCubeLets_img2img_multitarget(infos, collection, groupnm)

getCubeLets(infos, collection, groupnm)

getDatasets_(infos, datasets, fortrain)

getDatasets(infos[, dsetsel, train, validation])

validInfo(info)

getInfo(filenm, quick)

getAttribInfo(info, filenm)

getWellInfo(info, filenm)

getNrClasses(info)

arroneitemsize(dtype)

getTotalSize(info)

modelIdxStr(idx)

odsetBoolValue(value)

addInfo(inpfile, plfnm, filenm, infos, clssnm)

getClassIndices(info[, filternms])

getClassIndicesFromData(info)

getMainOutputs(info)

getOutputs(info)

getOutputNames(filenm, indices)

translateFnm(modfnm, modelfnm)

Module Contents

dgbpy.hdf5.hdf5ext = 'h5'
dgbpy.hdf5.dictAddIfNew(newset, toadd)
dgbpy.hdf5.getCubeLetNames(info)
dgbpy.hdf5.getCubeLetNamesByGroup(info, groupnm, example)
dgbpy.hdf5.getCubeLetNamesByGroupByItem(info, groupnm, collnm, idx)
dgbpy.hdf5.getGroupSize(filenm, groupnm)
dgbpy.hdf5.getNrAttribs(info)
dgbpy.hdf5.getNrGroupInputs(info)
dgbpy.hdf5.getNrOutputs(info)
dgbpy.hdf5.getSeed(info)
dgbpy.hdf5.get_np_shape(shape, nrpts=None, nrattribs=None)
dgbpy.hdf5.getTrainingConfig(h5file)
dgbpy.hdf5.isRegression(info)
dgbpy.hdf5.isClassification(info)
dgbpy.hdf5.isSegmentation(info)
dgbpy.hdf5.isSeisClass(info)
dgbpy.hdf5.hasUnlabeled(info)
dgbpy.hdf5.isLogInput(info)
dgbpy.hdf5.isLogOutput(info)
dgbpy.hdf5.isImg2Img(info)
dgbpy.hdf5.isZipModel(info)
dgbpy.hdf5.isCrossValidation(info)
dgbpy.hdf5.unscaleOutput(info)
dgbpy.hdf5.applyGlobalStd(info)
dgbpy.hdf5.applyLocalStd(info)
dgbpy.hdf5.applyNormalization(info)
dgbpy.hdf5.applyMinMaxScaling(info)
dgbpy.hdf5.applyRangeScaling(info)
dgbpy.hdf5.applyArrTranspose(info)
class dgbpy.hdf5.StorageType(*args, **kwds)

Bases: enum.Enum

Create a collection of name/value pairs.

Example enumeration:

>>> class Color(Enum):
...     RED = 1
...     BLUE = 2
...     GREEN = 3

Access them by:

  • attribute access:

    >>> Color.RED
    <Color.RED: 1>
    
  • value lookup:

    >>> Color(1)
    <Color.RED: 1>
    
  • name lookup:

    >>> Color['RED']
    <Color.RED: 1>
    

Enumerations can be iterated over, and know how many members they have:

>>> len(Color)
3
>>> list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.

AWS = 'AWS'
LOCAL = 'LOCAL'
class dgbpy.hdf5.Scaler(*args, **kwds)

Bases: enum.Enum

Create a collection of name/value pairs.

Example enumeration:

>>> class Color(Enum):
...     RED = 1
...     BLUE = 2
...     GREEN = 3

Access them by:

  • attribute access:

    >>> Color.RED
    <Color.RED: 1>
    
  • value lookup:

    >>> Color(1)
    <Color.RED: 1>
    
  • name lookup:

    >>> Color['RED']
    <Color.RED: 1>
    

Enumerations can be iterated over, and know how many members they have:

>>> len(Color)
3
>>> list(Color)
[<Color.RED: 1>, <Color.BLUE: 2>, <Color.GREEN: 3>]

Methods can be added to enumerations, and members can have their own attributes – see the documentation for details.

GlobalScaler = 'Global Standardization'
StandardScaler = 'Local Standardization'
Normalization = 'Normalization'
MinMaxScaler = 'MinMax'
dgbpy.hdf5.isDefaultScaler(scaler, info, uselearntype=True)
dgbpy.hdf5.updateScaleInfo(scaler, info)
dgbpy.hdf5.getScalerStr(info)
dgbpy.hdf5.doOutputScaling(info)
dgbpy.hdf5.isModel(info)
dgbpy.hdf5.isMultiLabelRegression(info)
dgbpy.hdf5.hasboto3(auth=False)
dgbpy.hdf5.isS3Uri(uri)
dgbpy.hdf5.shouldUseS3(modelfnm, params=None, relaxed=True, kwargs=None)

Check if the model file should be stored or retrieved from S3. :param modelfnm: The model file name. :param params: The parameters dictionary. :param relaxed: If True, the function will not raise an exception if the model file is not an S3 URI. :param kwargs: The keyword arguments dictionary.

dgbpy.hdf5.rm_tree(pth)
dgbpy.hdf5.getLogDir(withtensorboard, examplenm, platform, basedir, clearlogs, args)
dgbpy.hdf5.getOutdType(classinfo, hasunlabels)
dgbpy.hdf5.getCubeLets_img2img_multitarget(infos, collection, groupnm)
dgbpy.hdf5.getCubeLets(infos, collection, groupnm)
dgbpy.hdf5.getDatasets_(infos, datasets, fortrain)
dgbpy.hdf5.getDatasets(infos, dsetsel=None, train=True, validation=True)
dgbpy.hdf5.validInfo(info)
dgbpy.hdf5.getInfo(filenm, quick)
dgbpy.hdf5.getAttribInfo(info, filenm)
dgbpy.hdf5.getWellInfo(info, filenm)
dgbpy.hdf5.getNrClasses(info)
dgbpy.hdf5.arroneitemsize(dtype)
dgbpy.hdf5.getTotalSize(info)
dgbpy.hdf5.modeloutstr = 'Model.Output.'
dgbpy.hdf5.modelIdxStr(idx)
dgbpy.hdf5.odsetBoolValue(value)
dgbpy.hdf5.addInfo(inpfile, plfnm, filenm, infos, clssnm)
dgbpy.hdf5.getClassIndices(info, filternms=None)
dgbpy.hdf5.getClassIndicesFromData(info)
dgbpy.hdf5.getMainOutputs(info)
dgbpy.hdf5.getOutputs(info)
dgbpy.hdf5.getOutputNames(filenm, indices)
dgbpy.hdf5.translateFnm(modfnm, modelfnm)