20 template <
class T>
class Array2D;
22 class PCACovarianceCalculator;
79 void clearAllSamples();
83 template <
class IDXABL>
void addSample(
const IDXABL& sample );
93 float getEigenValue(
int idx)
const;
100 template <
class IDXABL>
void getEigenVector(
int idx,
137 template <
class IDXABL>
inline 141 for (
int idx=0; idx<
nrvars_; idx++ )
143 const float val = (float) sample[idx];
151 template <
class IDXABL>
inline 154 for (
int idx=0; idx<
nrvars_; idx++ )
#define mExpClass(module)
Definition: commondefs.h:157
const int nrvars_
Definition: pca.h:123
TypeSet< Threads::Work > workload_
Definition: pca.h:127
T get(int, int) const
Definition: arrayndimpl.h:469
Performs Pricipal Component Analysis on samples with N variables.
Definition: pca.h:70
The generalization of something (e.g. a computation) where the steps must be done in sequence...
Definition: task.h:147
Array2D ( Subclass of ArrayND ) is a two dimensional array.
Definition: arraynd.h:127
Array2DImpl< float > covariancematrix_
Definition: pca.h:124
int * eigenvecindexes_
Definition: pca.h:133
TypeSet< float > samplesums_
Definition: pca.h:126
ObjectSet< SequentialTask > tasks_
Definition: pca.h:128
void addSample(const IDXABL &sample)
Definition: pca.h:138
ObjectSet< TypeSet< float > > samples_
Definition: pca.h:125
float * eigenvalues_
Definition: pca.h:129
void getEigenVector(int idx, IDXABL &vec) const
Definition: pca.h:152