|
template<class A , class B , class C > |
void | GenericConvolve (int lx, int ifx, const A &x, int ly, int ify, const B &y, int lz, int ifz, C &z) |
|
template<class A , class B , class C > |
void | GenericConvolveNoUdf (int lx, int ifx, const A &x, int ly, int ify, const B &y, int lz, int ifz, C &z) |
|
template<class A , class B > |
float | similarity (const A &a, const B &b, int sz, bool normalize=false, int firstposa=0, int firstposb=0) |
|
float | similarity (const FloatMathFunction &, const FloatMathFunction &, float x1, float x2, float dist, int sz, bool normalize) |
|
float | semblance (const ObjectSet< float > &signals, const Interval< int > &) |
|
float | semblance (const ObjectSet< float > &signals, int signalsize, const TypeSet< float > &signalstarts, const Interval< int > &gate) |
|
double | LanczosKernel (int size, double x) |
|
bool | findValue (const FloatMathFunction &, float x1, float x2, float &res, float targetval=0, float tol=1e-5) |
|
float | findValueInAperture (const FloatMathFunction &, float startx, const Interval< float > &aperture, float dx, float target=0, float tol=1e-5) |
|
float | findExtreme (const FloatMathFunction &, bool minima, float x1, float x2, float tol=1e-5) |
|
template<class A , class B > |
void | reSample (const FloatMathFunction &input, const A &samplevals, B &output, int nrsamples) |
|
template<class A , class B , class C > |
void | genericCrossCorrelation (int lx, int ifx, const A &x, int ly, int ify, const B &y, int lz, int ifz, C &z) |
|
template<class A > |
void | reverseArray (A *in, int sz, A *out=0) |
|
template<class A , class B , class C >
void GenericConvolve |
( |
int |
lx, |
|
|
int |
ifx, |
|
|
const A & |
x, |
|
|
int |
ly, |
|
|
int |
ify, |
|
|
const B & |
y, |
|
|
int |
lz, |
|
|
int |
ifz, |
|
|
C & |
z |
|
) |
| |
|
inline |
Compute z = x convolved with y; i.e.,
ifx+lx-1
z[i] = sum x[j]*y[i-j] ; i = ifz,...,ifz+lz-1
j=ifx
template<class A , class B , class C >
void genericCrossCorrelation |
( |
int |
lx, |
|
|
int |
ifx, |
|
|
const A & |
x, |
|
|
int |
ly, |
|
|
int |
ify, |
|
|
const B & |
y, |
|
|
int |
lz, |
|
|
int |
ifz, |
|
|
C & |
z |
|
) |
| |
|
inline |
Compute z = x cross-correlated with y; i.e.,
ifx+lx-1
z[i] = sum x[j]*y[i+j] ; i = ifz,...,ifz+lz-1 j=ifx
Cross correlation will be performed using GenericConvolve function, here is the method used: 1) reverse the samples in the x array ->copy them to a temporary array, 2) use the temporary array to call function GenericConvolve() with ifx set to 1-ifx-lx.