22 template <
class T>
class Array2D;
24 class PCACovarianceCalculator;
81 void clearAllSamples();
85 template <
class IDXABL>
void addSample(
const IDXABL& sample );
95 float getEigenValue(
int idx)
const;
102 template <
class IDXABL>
void getEigenVector(
int idx,
139 template <
class IDXABL>
inline 143 for (
int idx=0; idx<
nrvars_; idx++ )
145 const float val = (float) sample[idx];
153 template <
class IDXABL>
inline 156 for (
int idx=0; idx<
nrvars_; idx++ )
#define mExpClass(module)
Definition: commondefs.h:160
const int nrvars_
Definition: pca.h:125
TypeSet< Threads::Work > workload_
Definition: pca.h:129
T get(int, int) const
Definition: arrayndimpl.h:470
Performs Pricipal Component Analysis on samples with N variables.
Definition: pca.h:72
The generalization of something (e.g. a computation) where the steps must be done in sequence...
Definition: task.h:124
Array2D ( Subclass of ArrayND ) is a two dimensional array.
Definition: arraynd.h:131
Array2DImpl< float > covariancematrix_
Definition: pca.h:126
int * eigenvecindexes_
Definition: pca.h:135
TypeSet< float > samplesums_
Definition: pca.h:128
ObjectSet< SequentialTask > tasks_
Definition: pca.h:130
void addSample(const IDXABL &sample)
Definition: pca.h:140
ObjectSet< TypeSet< float > > samples_
Definition: pca.h:127
float * eigenvalues_
Definition: pca.h:131
void getEigenVector(int idx, IDXABL &vec) const
Definition: pca.h:154