OpendTect  7.0
Public Member Functions | Protected Attributes | List of all members
PolynomialND< T > Class Template Reference

PolynomialND is a N-dimensional polynomial with arbitary orders in each dimension. It can be fitted any ArrayND. To access the polynomial's data use getValue. getValue3D is optimized for third order, tree-dimensional cases. More...

Public Member Functions

 PolynomialND (const ArrayNDInfo &)
 
 ~PolynomialND ()
 
bool fit (const ArrayND< T > &)
 
getCoeff (const int *pos) const
 
getValue (const TypeSet< float > &) const
 
getValue3D (float x0, float x1, float x2) const
 
void setCoeff (const int *pos, T val)
 

Protected Attributes

ArrayNDImpl< T > coeffs
 
LinSolver< T > * solver
 

Detailed Description

template<class T>
class PolynomialND< T >

PolynomialND is a N-dimensional polynomial with arbitary orders in each dimension. It can be fitted any ArrayND. To access the polynomial's data use getValue. getValue3D is optimized for third order, tree-dimensional cases.

<>

Constructor & Destructor Documentation

◆ PolynomialND()

template<class T >
PolynomialND< T >::PolynomialND ( const ArrayNDInfo size_)

◆ ~PolynomialND()

template<class T >
PolynomialND< T >::~PolynomialND

Member Function Documentation

◆ fit()

template<class T >
bool PolynomialND< T >::fit ( const ArrayND< T > &  input)

◆ getCoeff()

template<class T >
T PolynomialND< T >::getCoeff ( const int *  pos) const
inline

◆ getValue()

template<class T >
T PolynomialND< T >::getValue ( const TypeSet< float > &  pos) const
inline

◆ getValue3D()

template<class T >
T PolynomialND< T >::getValue3D ( float  x0,
float  x1,
float  x2 
) const
inline

◆ setCoeff()

template<class T >
void PolynomialND< T >::setCoeff ( const int *  pos,
val 
)
inline

Member Data Documentation

◆ coeffs

template<class T >
ArrayNDImpl<T> PolynomialND< T >::coeffs
protected

◆ solver

template<class T >
LinSolver<T>* PolynomialND< T >::solver
protected

Generated at for the OpendTect seismic interpretation project. Copyright (C): dGB Beheer B.V. 1995-2024